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1. Introduction

In this presentation, we will introduce tensor products of modules over a
ring and their connections to algebraic number theory. Specifically, we will
use tensor products to explain why there exists a “choice free” Minkowski
embedding.

2. Basic Definitions

We’ll begin by introducing tensor products of vector spaces, as these are
a little more user-friendly. We present two definitions and use the second to
introduce tensor products of modules over a ring. Throughout take K to be
a field and R a ring.

Definition 2.1. Let V and W be K-vector spaces. If V and W have
{v1, . . . , vn} and {w1, . . . , wm} as bases respectively, then define V ⊗W to
be the K-vector space with basis {vi ⊗ wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. For any
v ∈ V and w ∈W with v =

∑
aivi and w =

∑
bjwj , we define v⊗w in the

natural way:

v ⊗ w =
∑

aibjvi ⊗ wj
Such an element is called a pure tensor ; any element of V ⊗ W may be
expressed as a sum of pure tensors. The minimal number of pure tensors
needed to express an element of V ⊗W as a sum of pure tensors is called
the rank of the element.

This definition is particularly nice in that it is concrete and easy to
understand and use immediately. Moreover, we know immediately that
dim(V ⊗W ) = mn. The drawbacks of this definition are: (1) it obscures
the fact that the tensor product defines a functor from the product of the
category of K-vector spaces with itself, to itself

⊗ : (V ectK)× (V ectK)→ (V ectK);

(2) it relies on choosing bases for V and W . While this in and of itself
is not ideal (indeed, it would be ironic if, in explaining how to arrive at a
choice-free version of the Minkowski embedding, we made lots of arbitrary
choices on the way), this definition will completely break down if we try to
generalize it to modules over a ring, since not every module has a basis.

Thus, we present the following definition of tensor products:

Definition 2.2. Let V and W be K-vector spaces. The tensor product
V ⊗W is a K-vector space equipped with a bilinear map ⊗ : V ×W → V ⊗W
such that for any vector space U and bilinear map α : V ×W → U there
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exists a unique linear map β : V ⊗W such that α = ⊗◦ β and the following
diagram commutes:

V ⊗W

V ×W

U

β

⊗

α

We see below that any two objects T and T ′ satisfying the above are the
same up to isomorphism, implying the tensor product is unique.

Exercise 2.3. We prove the above claim. Specifically, if T and T ′ are two R-
modules with respective bilinear maps b : M ×N → T and b′ : M ×N → T ′

satisfying the desired mapping property, we claim that T ∼= T ′. By the
universal mapping property, we have the following diagrams:

T

M ×N

T ′

f

b

b′

T ′

M ×N

T

f ′

b′

b

We combine these diagrams into one

T

M ×N T ′

T

f
b

b

b′

f ′

T

M ×N

T

f ′◦f

b

b

and apply the universal mapping property to f ′ ◦ f . Namely, there is a
unique linear map from T → T making the diagram above (on the right)
commute. The identity works, implying that f ′◦f = idT . A similar trick can
be used to show that f ◦f ′ = idT ′ . This implies that T ∼= T ′, as desired. �

Example 2.4. Finally, we illustrate how, given two R-modules M and N ,
one may construct their tensor product M ⊗ N . By the above, we know
that this construction gives us the tensor product of M and N . Begin by
letting U be the free R-module generated by the symbols a ⊗ b for a ∈ M
and b ∈ N (i.e. U is the module consisting of all finite R-linear combinations
of the symbols a ⊗ b, where a and b range over all elements of M and N
respectively). This module is huge, but luckily we do not need to deal with
it for very long. Let U0 be the subspace generated by elements of the form

(ra)⊗ b− r(a⊗ b); a⊗ (rb)− r(a⊗ b);
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(a+ a′)⊗ b− a⊗ b− a′ ⊗ b; a⊗ (b+ b′)− a⊗ b− a⊗ b′.
We claim that M ⊗ N is just the quotient module U/U0. As an exercise,
you should check that this is true (or at least justify it to yourself).

To do:

(1) Generalize all of this to modules over a ring.

(2) Given two R-modules M and N , show how to construct their tensor
product. (See page 7 of this article by Keith Conrad or the second
definition in the Auroux-Harris document. If using the Auroux-Harris
source, will need to generalize to R-modules, which should be the same
but things might be different? Not sure.)

(3) Give some interesting examples of tensors of R-modules specifically. E.g.
tensors of free modules will behave just like vector spaces, but things
get freaky when you add torsion: Z2 ⊗ Z3 = {0} as a Z-module.

3. Some Commutative Algebra

In this section, we state but do not prove some important results from
commutative algebra, while also introducing the requisite definitions.

Recall the definition of an algebra over a ring—an algebra over a ring is
simply an R-module A that is also endowed with a ring structure, where
scalars commute with everything. Thus, when R = K is a field, an algebra
is just a vector space that is also a ring. Examples include the algebra of
n × n matrices with entries in R, Mn(R); R[X]; RG a group ring; H the
quaternions (as an R-algebra, H is not an algebra over C, since then scalars
do not commute with everything). From here on out, we will only deal with
algebras over a field K.

Definition 3.1. Let A be a K-algebra. An A-module V is simple if it is
nonzero and it does not have any other A-submodules other than 0 and
itself.

Definition 3.2. An A-module V is called semisimple if it is the direct sum
of simple submodules. In other words, V is semisimple if there exist simple
submodules Si ⊂ V (for i ∈ I, an index set) such that

V =
⊕
i∈I

Si.

Definition 3.3. A K-algebra A is semisimple if it is semisimple as an A-
module.

Now, we state the Artin-Wedderburn theorem and one of its corollaries:

Theorem 3.4 (Artin-Wedderburn Theorem). Let K be a field and A a
semisimple K-algebra. Then, there exist positive integers r and n1, . . . , nr,
as well as division algebras D1, . . . , Dr over K such that

A ∼= Mn1(D1)× . . .×Mnr(Dr).

https://kconrad.math.uconn.edu/blurbs/linmultialg/tensorprod.pdf
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Conversely, each K-algebra of the form Mn1(D1)×. . .×Mnr(Dr) is semisim-
ple.

Corollary 3.5. Let f ∈ R[X] be of the form f = f1 · · · fr · g1 · · · gs for
pairwise coprime irreducible polynomials fi, gj ∈ R[X], where the fi’s are
the degree 1 polynomials in the factorization of f and the gj’s have degree
2. Then, the Artin-Wedderburn decomposition of R[X]/(f) is

R[X]/(f) ∼= R× . . .× R× C× . . .× C = Rr × Cs.

To do:

(1) This section should be finished; just need to check it over.

4. Connections to Fields

To do:

(1) This entire section.

5. The Minkowski Embedding

We begin by recalling the Minkowski embedding of a a number field into
Euclidean space. Given a number field K/Q of degree n, recall that we may
take a primitive element θ such that K = Q[θ]. Letting f ∈ Q[X] be the
(monic) irreducible polynomial of θ, we recall that f factors over R as the
product of r linear factors with real roots times a product of s quadratic
factors each having genuinely complex (and therefore conjugate) numbers
as roots. Thus, the roots of f (conjugates of θ) are as follows:

θ1, θ2, . . . , θr ∈ R
and

{θr+1, θr+2 = θr+1}, {θr+3, θr+4 = θr+3}, . . . , {θr+2s−1, θr+2s = θr+2s−1} ∈ C.
The corresponding n homomorphisms into C give us r embeddings of K
into R and s pairs of conjugate, nonreal embeddings into C. Choosing
one embedding for each of the s pairs of conjugate embeddings, we get an
injective homomorphism called the fundamental embedding or Minkowski
embedding of K into Euclidean space. Namely, if σ1, . . . , σr are the r real
embeddings, and if γ1, . . . , γs are our selected s complex ones, ι is the map

ι : K ↪→ E := Rr × Cs ∼= Rn

given by
ι(α) = (σ1(α), . . . , σr(α), γ1(α), . . . , γs(α)).

While this definition of the Minkowski embedding is completely fine, it is
possible to formulate it without making arbitrary choices, which is prefer-
able. The vocabulary for doing so is that of tensor products.

With notation as above, consider K = Q[θ] ∼= Q[X]/(f) and R as Q-
vector spaces. Let f = f1 · · · frg1 · · · gs be the factorization of f over R
into r linear factors f1, . . . , fr and s quadratic factors g1, . . . , gs. Take their
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tensor product over Q: Q[θ]⊗Q R. (From here on out, we will blur the line
use Q[θ] and Q[X]/(f) interchangeably.) We claim that this is an algebra
over R and that it is in fact isomorphic to R[X]/(f). Note that the mul-
tiplication structure on Q[θ]⊗Q R is just componentwise multiplication (so
a⊗ b · c⊗d = ac⊗ bd). Moreover, Q[θ]⊗QR is an R-algebra via the R-action
given by r · (p(x)⊗ s) := p(x)⊗ rs. We leave it as an exercise to check this
detail. Basically, in taking the Q-tensor product of Q[X]/(f) with R, we are
extending our ring of scalars to R. Because Q[θ] is a subfield of C, it makes
intuitive sense that this might be possible; the proposition below shows that
it is:

Proposition 5.1. Q[X]/(f)⊗Q R ∼= R[X]/(f) as R-algebras.

Proof. Let φ : Q[X]/(f) ⊗Q R → R[X]/(f) be the map defined by taking
p(x)⊗ r 7→ rp(x) and extending linearly, where p(x) ∈ Q[X]/(f) and where
r ∈ R. Clearly, φ is well-defined because if p − q ∈ (f), then rp − rq ∈ (f)
(where (f) is considered as an ideal of R[X] in this case). It is also easy to
check that φ is indeed an R-algebra homomorphism; for the sake of brevity
we omit these details. It remains to show that this map is invertible. Let
ψ : R[X]/(f)→ Q[X]/(f)⊗Q R be given by

f(x) := anx
n + . . .+ a1x+ a0 7→ 1⊗ a0 + x⊗ a1 + . . .+ xn ⊗ an.

Again, we leave it to the reader to check that this is an R-algebra homo-
morphism. However, it is not immediate that this is a well-defined map,
and we must check this. If p − q = gf , where p, q, g ∈ R[X], then we may
“translate” this expression into one with tensors via the map given above.
We are left with something that looks like

1⊗(a0−b0)+. . .+xk⊗(ak−bk) = (1⊗c0+. . .+xm⊗cm)(1⊗d0+. . .+xn⊗dn),

where the a’s, b’s, c’s and d’s correspond to p, q, g and f respectively (remark
that we may not have as many b’s as a’s, since p and q do not necessarily
have the same degree; the above is just a notational convenience). Note that
in the above, the d’s are all in Q, so

1⊗ d0 + . . .+ xn ⊗ dn = f(x)⊗ 1 = 0⊗ 1 = 0,

implying the images of p and q under ψ are equal. We should also check
that if a polynomial in R[X]/(f) is of the form rp(x) for p ∈ Q[X]/(f) and
r ∈ R, then ψ(rp(x)) = p(x)⊗ r. This is not difficult to see:

rc0 + rc1x+ . . .+ rcn−1x
n−1 7→ 1⊗ rc0 + . . .+ xn ⊗ rcn−1

= c0 ⊗ r + . . .+ cn−1x
n−1 ⊗ r = p(x)⊗ r,

where the second to last equality is a consequence of the fact that we may
move rationals in between the coordinates of the tensors. Thus, we have
that ψ is a well-defined homomorphism of R-algebras, and, moreover, it is
the inverse of φ:

ψ(φ(p(x)⊗ r)) = ψ(rp(x)) = p(x)⊗ r,
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and

φ(ψ(c0 + c1x+ . . .+ cn−1x
n−1)) = φ(1⊗ c0 + x⊗ c1 + . . .+ xn−1 ⊗ cn−1)

= c0 + c1x+ . . .+ cn−1x
n−1.

The desired isomorphism follows. �

Now, armed with the commutative algebra we recalled in section 3, we
note that the Artin-Wedderburn Theorem and its corollaries imply that

K ⊗Q R ∼= R[X]/(f) ∼= Rr × Cs.
This gives us a canonical embedding of K = Q[θ] into E = Rr × Cs, and
importantly, this version of the Minkowski embedding was derived without
making arbitrary choices, which is exactly what we wanted.1 To do:

(1) Choice-free Minkowski embedding

1Another way to see the second isomorphism in the above is to use the Chinese Remainder
Theorem.
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